The sales productivity platform SMBs and startups actually love.

You'll find it easier to scrape any website with our step-by-step tutorials from beginner to pro.

Our Partners and customers

Latest case study

Expertly selected reads that promise to captivate and inspire.
Left arrowRight arrow

Services that we do here to explain

Get Quote
Right arrow

Read case studies

Dive deep into the case study for profound insights and strategic learnings.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Custom-development
View all
PDF Extraction Project
No-code-automation
Left arrow

PDF Extraction Project

Our client, a prominent financial institution, faced a critical challenge in managing an influx of..

The Challenge

The client had a substantial volume of scanned financial documents from which specific data—Name, Date, and Amount—needed to be extracted accurately. The process was initially manual, proving to be time-consuming, prone to human error, and inefficient for the increasing workload. Furthermore, organizing the extracted data in a systematic manner for easy access and reference posed another major challenge.

For instance, in one month, our solution processed 10,000 documents, with an impressive data accuracy rate of 99.5%. This was a 75% reduction in processing time compared to their previous manual method.

Conclusion

This case study demonstrates the potent efficiency and accuracy of our data scraping solution in handling large volumes of scanned financial documents. By automating data extraction and organization, we were able to significantly reduce processing time, increase data accuracy, and streamline the document retrieval process. Our solution provides a compelling answer to similar challenges faced by financial institutions and serves as a ready model for future scalability.

Solution

Our team developed and implemented a sophisticated data scraping solution tailored specifically for scanned financial documents. First, the client collected all the relevant documents and provided us with their scanned copies. We then used our solution to scrape the required data. Using advanced data recognition and extraction algorithms, our system was able to identify and extract the necessary information—Name, Date, and Amount—from the various documents.

Once the data was extracted, the solution’s next task was to sort the documents accordingly. We implemented an automated system to create specific folders based on the Date, allowing for systematic organization of the documents. Each scraped document was then saved in its designated folder.

Results

The results of implementing our data scraping and sorting solution were immediately evident and overwhelmingly positive. The client was able to process a significantly larger volume of documents within a short time, with a notable increase in the accuracy of data extraction, eliminating the possibility of human error.

Our solution’s organization feature also proved invaluable. With each document being automatically sorted and saved in a designated folder according to the Date, the client was able to easily access and reference the scraped documents, enhancing their operational efficiency.

Custom-development
View all
Car Rental services
E-Commerce
Left arrow

Car Rental services

Our client is a forward-thinking company working in field of automotive Car Rental services....

The Challenge

NAME.com boasts an extensive set of filters, sub filters, and sub selections, making the process of reaching the final list of cars a multi-layered task. Users must navigate through a cascade of filter choices, from the basic options like make and model to complex decisions regarding annual mileage, lease length, upfront payments, and finance types. Manually extracting data from NAME.com’s intricate filter system consumed substantial time and resources for our client. They sought a custom-built tool that could scrape data swiftly, taking into account multiple sets of specific filter combinations.

About NAME.com: The platform from which data was to be scraped

NAME.com stands as a leading online platform in the United Kingdom, dedicated to transforming how consumers discover and lease vehicles. The platform’s mission revolves around simplifying the intricate world of car rental services, making it accessible and convenient for individuals across the UK. NAME.com empowers users with an array of filters, allowing them to  pinpoint their perfect vehicle. These filters include Make & Model, Monthly Budget, Lease Duration, Fuel Type, Body Type, Transmission, Features & Specifications, Colour Preferences, Lease Types, and more.

Specific Requirements

  1. Streamline Data Extraction: Our client required a tool to retrieve car data without relying on external APIs or paid tools and wanted a tool that was custom coded from scratch.
  2. Navigate Complex Filters: The scraper had to navigate through NAME.com’s intricate filter hierarchy and the tool to replicate the process of selecting filters as is done by normal users.
  3. Speedy Results: Despite the vast data, the client needed quick scraping results.
  4. User-Friendly Interface: Rather than code scripts, the client wanted a user-friendly web interface to access the tool and obtain data with a single click.

The Output & The Process

We delivered a user-friendly web page with a pre-filled table of filter values, aligning with the client’s frequently used selections. Client could simply click a button associated with each filter set to initiate data scraping. Our tool replicated the manual filter selection process in the background while swiftly presenting results in Excel format on the front end. Separate buttons allowed users to scrape data for the current date or the past 30 days. The final Excel sheet included a wealth of data about vehicles falling under the selected filter set. It encompassed details such as make, model, trim level, model derivative, finance type, pricing for the first, second, and third positions, and providers of the vehicle for the top three positions. This saved the client hours of manual scraping, streamlining the process of accessing vital data.

Conclusion

Our custom tool successfully tackled the complexities of multi-level, multi-filter data scraping, simplifying a formerly labour-intensive process. This achievement demonstrates our capacity to develop similar tools for diverse businesses, facilitating highly intricate scraping tasks within minutes. For businesses aiming to optimize data extraction, our expertise can pave the way for enhanced efficiency and productivity.

Sales Leads
View all
Broadband API Scraping
Custom-development
Left arrow

Broadband API Scraping

In an increasingly interconnected world, internet providers play a pivotal role in ensuring...

The Challenge

The client required a targeted data extraction tool that could scrape a website listing all internet providers according to zip codes. Their focus was on three main data points: the state in which the internet providers operated, the population covered by each provider, and the maximum speed offered. In addition, they needed detailed information about the company’s size, revenue, and the number of employees. The challenge lay in accurately scraping the required information and organizing it in an accessible, clear, and useful manner.

Our Solution

To meet the client’s needs, we developed an advanced internet provider scraper tailored to their specific requirements. The tool was designed to search the targeted website, extract the relevant information as per the client’s filters, and present the data in an organized Excel sheet.

The scraper was built to capture key data points such as the state of operation, population covered, and maximum speed offered by each provider. Additionally, it was programmed to gather critical business intelligence, including the company’s size, revenue, and employee count.

Results

The outcome of our solution was transformative for the client. Our scraper significantly reduced the time spent on manual data gathering, resulting in a 80% increase in efficiency. The scraper was able to systematically extract data for over 1,000 internet providers within a short period, presenting accurate, insightful data in an easy-to-analyze format.

By using the scraper, the client could now perform a comparative analysis of various internet providers. This detailed comparison allowed them to make informed business decisions based on data such as population coverage, maximum speed, company size, revenue, and employee count.

Conclusion

This case study stands as a testament to our expertise in developing tailored data scraping solutions. Our tool empowered the client with data-driven insights, enhancing their operational efficiency and strategic planning. It is our commitment to continuously deliver innovative digital solutions that drive business growth and success. Let us help you unlock new opportunities and propel your business forward.

Custom-development
View all
No-code-automation
View all
Scraping NGO
Sales Leads
Left arrow

Scraping NGO

Our client is a pioneering tool developer specializing in creating digital solutions to address co..

    The Challenge

    • Diverse NGO Services: NGOs offer a myriad of services ranging from medical assessments, legal aid, language instruction, to programs related to gender-based violence. Understanding the breadth and specificity of these services was a challenge.
    • Language Barriers: With programs offered in multiple languages like English,French, and Russian, it was essential to ensure the tool could cater to various linguistic groups.
    • Effective Matching: Individuals seeking support often struggle to find the right NGO program, particularly if they lack resources. It was crucial to develop a tool that could accurately match a person’s needs with the right service.
    • Data Compilation: With vast amounts of data scattered across different NGO websites, the client faced the challenge of extracting, compiling, and presenting this information in a user-friendly manner.

    The Process

    • Data Extraction: The client’s tool was designed to crawl various NGO websites and extract pertinent information about the diverse programs they offer.
    • Algorithm Development: An advanced matching algorithm was developed to efficiently pair individuals with suitable NGO programs based on their profiles.
    • Feedback Loop: The tool incorporated a feedback mechanism to continually refine its matching process, ensuring greater accuracy over time.

    The Output

    • Comprehensive Database: The tool successfully compiled a vast database of NGO programs, categorized by service type, language, eligibility criteria, and more.
    • Efficient Matching: Individuals in need could now find the most suitable NGO programs in mere seconds, ensuring they receive the assistance they require.
    • Community Benefits: By connecting individuals to free or low-cost programs, the tool ensured that more people could access essential services, leading to stronger, more resilient communities.
    • Lead Generation: The tool also served as a lead generation platform, offering the compiled data at affordable rates for various stakeholders in the NGO sector.

    Conclusion

    Our client’s innovative tool successfully addressed a significant gap in the NGO sector by efficiently connecting individuals in need with the right resources. By leveraging technology, the tool not only streamlined the process of finding appropriate NGO programs but also created a platform that could evolve and adapt based on feedback and changing societal needs. This case study underscores the immense potential of digital solutions in addressing complex societal challenges and paves the way for more such innovations in the future.

    Sales Leads
    View all
    Lead generation from Multilingual Dataset
    Custom-development
    Left arrow

    Lead generation from Multilingual Dataset

    Our client faced a significant hurdle in extracting valuable leads from vast amounts of multiling...

    The Challenge

    Our client faced a significant hurdle in extracting valuable leads from vast amounts of multilingual data that they generate regularly. To overcome this challenge, they approached us with the need for a tool that could efficiently translate content from different languages, identify key entities, and then re-translate them into their original language for verification.

    The Process

    Our solution involved a comprehensive process that  seamlessly integrated with the client’s workflow:

    1. Translation and Entity Extraction: The tool efficiently translated content from various languages into English, preserving the original meaning. It also systematically identified key entities from the data, making it highly
      adaptable.
    2. Noun Extraction in English: Following translation, the tool systematically identified nouns in the English data. This step was crucial in extracting names and company information from the content.
    3. Translation back to original language for Verification: The extracted
      names and company details were then translated back into it’s original language. This step served to verify the accuracy of the information in the original context.
    4. Customization for Multilingual and Varied Data: The versatility of the
      tool was a key feature. It could be customized to function with any language, allowing the client to adapt it to various markets. Furthermore, the tool seamlessly processed data in different formats, providing flexibility in its application.
    5. Information Extraction: Once verified, the tool efficiently extracted valuable information, including leads, from the processed data. This step ensured that the client could gather meaningful insights and potential business opportunities.

    Output

    The output of our tool was twofold. Firstly, it successfully addressed the client’s immediate need by providing an efficient means of lead generation from multilingual data. Secondly, the tool’s customization feature opened up possibilities for its application in diverse linguistic and data environments, offering the client a scalable and adaptable solution for future challenges.

    Conclusion

    In conclusion, our tailored tool not only met the client’s specific requirement for lead generation from multilingual data but also demonstrated its potential for roader applications. By leveraging systematic entity extraction and versatile language translation, we created a powerful tool that empowers our client to unlock valuable insights from a wide range of multilingual and varied data sources. This case study serves as a testament to our commitment to providing innovative solutions that align with our client’s evolving needs.

    Sales Leads
    View all
    Custom-development
    View all
    LinkedIn Post Scraping Tool
    Sales Leads
    Left arrow

    LinkedIn Post Scraping Tool

    Our client approached us with a unique and specific requirement: they needed a custom scraping.....

    The Challenge

    The challenge lay in the intricacies of LinkedIn’s security measures. LinkedIn is renowned for its stringent security protocols, akin to other prominent social media platforms like Facebook and Instagram. These platforms make scraping data from their backend APIs a formidable task. They employ a multitude of security checks and obstacles to prevent automated data extraction.

    Additionally, the client had a specific set of requirements that included capturing data on the most recent posts from the target profile. This entailed recording critical details such as the post’s URL, date of post, the number of likes and reactions it received, the total number of comments, and the post’s caption. However, the client did not require the retrieval of images included in the posts. Furthermore, the tool needed to be capable of extracting data from the selected profile efficiently and quickly.

    While images were not included, this streamlined approach allowed for efficient and quick data
    extraction. The tool operated seamlessly, collecting data from LinkedIn profiles for up to one year in a single run. This meant that users could access a year’s worth of posts from any profile, providing valuable insights for data analysis and sentiment assessment.

    Conclusion

    Our client presented us with a distinctive challenge: to scrape LinkedIn posts from a specific profile spanning a year. Despite LinkedIn’s robust security measures, we successfully developed a custom scraping tool that efficiently navigated the platform’s backend API calls. By mimicking human behavior and employing login cookies, we ensured the tool’s effectiveness and compliance with the platform’s security checks. The output of our tool met the client’s requirements precisely. It provided a dataset containing essential post details, enabling data analysis and sentiment assessment. This case study showcases our ability to tackle complex scraping tasks, even on highly secured platforms, and deliver efficient, customized solutions to meet our client’s unique needs.

    The Process

    Our approach involved the development of a custom scraping tool from scratch. This tool was designed to effectively navigate LinkedIn’s intricate backend API calls. It utilized login cookies for authentication, enabling it to access profiles and collect data.

    The tool’s operation was based on the concept of mimicking human behavior, ensuring that its scraping activity appeared as genuine as possible to the platform’s security measures. This
    approach enabled the tool to access and extract the required data without arousing suspicion.

    The Output

    The output of our custom scraping tool was exactly aligned with the client’s requirements. For each post within the specified profile, the tool collected and compiled data.
    This dataset included details such as the post’s publication date, its URL, the total number of likes and specific reactions (including empathy, praise, interest, entertainment, and appreciation), the total number of comments, and the post’s caption.